Course Info

Deep learning is a powerful and relatively-new branch of machine learning. In recent years it has been successfully applied to some of the most challenging problems in the broad field of AI, such as recognizing objects in an image, converting speech to text or playing games. In many such tasks, the state of the art performance today is attained by deep-learning algorithms, in some cases surpassing human-level performance.

This course will focus on the theory and algorithms behind deep learning, as well as on hardware and software interfaces that allow efficient training of deep learning algorithms. It will provide both the necessary theoretical background and the hands-on experience required to be an effective deep learning practitioner, or to start on the path towards deep learning research.

Learning Outcomes

At the end of the course, the student will:

  1. Understand the key notions of deep learning, such as learning regimes, model types, optimization and training methodologies.
  2. Be able to apply deep learning algorithms to real-world data and problems.
  3. Know how to effectively use python and deep-learning frameworks to implement models and algorithms from the recent literature.
  4. Know how to leverage GPUs and write custom computational kernels to accelerate both training and inference.
  5. Perform a small research project using the studied notions and techniques.

Administration

Evaluation: 40% Homework assignments, 60% final project.

Language: The course will be taught in English.

Credits: 3.0.

Prerequisites

  • A good background of linear algebra, probability and calculus. See the supplemental material page if you need a refresher on one of these.
  • Programming competency. The course will be very hands-on; much programming will be required. We will use Python exclusively, so it’s recommended to have experience with it.
  • An introductory course about machine learning and/or signal/image processing.

Collaboration Policy and Honor Code

By enrolling in this course, you agree that you will strictly follow our collaboration policy as specified below. Any violation of this policy will result in an immediate failure in the course, and treatment by the Technion regulations committee.

  1. Submission of assignments is in singles or pairs. You are free to form study groups and discuss homeworks with other students. However, you must implement all required code independently of other groups (only with your submission partner).
  2. Submitted work must only be your own. You must do your own thinking, coding, debugging and write all answers yourself. We will run automatic plagiarism-detection software on your submissions to enforce this policy.
  3. You may not use any solutions from previous semesters’ homeworks.
  4. You may not share your solutions with other students.
  5. You may not upload your homework solutions to any public website, such as github. Private repos are OK, but they must remain so even after course completion. As an exception, for the course final project only, you may use a public github repo.

Course Staff

Lecturers

Prof. Alex Bronstein

Prof. Alex Bronstein

Lecturer

Prof. Avi Mendelson

Prof. Avi Mendelson

Lecturer

Chaim Baskin

Chaim Baskin

Lecturer

TAs

Aviv Rosenberg

Aviv Rosenberg

TA

Checkers

Evgenii Zheltonozhskii

Evgenii Zheltonozhskii

Homework Checker

Yaniv Nemcovsky

Yaniv Nemcovsky

Homework Checker

Literature

The course does not follow any specific book. For your own reference, the following material may be useful.

  • Deep Learning

    Ian Goodfellow, Yoshua Bengio, Aaron Courville

    MIT Press, 2016

  • Deep Learning with PyTorch

    Vishnu Subramanian

    Packt, 2018

Detailed Syllabus

Due to the COVID-19 pandemic, this semester the course will be given using a remote-learning approach.

We provide lecture videos, notes, and slides to facilitate self-learning of the core topics. The tutorials are based on detailed and self-contained Jupyter notebooks, which guide you through a full implementation of one or more models and techniques for solving a specific task. They are meant to teach you the technical aspects of implementing deep learning systems. The course also includes hands-on homework assignments where you will implement working real-world models and run them on GPUs in the course servers. Finally, you will be required to perform a small research project instead of a final exam.

Students are expected to watch and read course material, available from the course Lectures and Tutorials pages. Viewing and/or reading the lecture and tutorial material is mandatory and crucial for success in the homework and project.

# Date Lecture materials Tutorial materials Homework
1 19/03/2020 Lecture 1: Course Introduction (Zoom, video lecture) Tutorial 1: Python, numpy, env setup (Zoom, jupyter notebook)  
2 26/03/2020 Lecture 2: Supervised learning (motivation and main lecture videos) Tutorial 2: Supervised learning, PyTorch basics I (video and notebook) HW1
3 02/04/2020 Lecture 3: Neural networks and CNNs (video) Tutorial 3: MLP, PyTorch basics II (video and notebook)  
4 09/04/2020 NO CLASS    
5 16/04/2020 NO CLASS   HW2
6 23/04/2020 Lecture 4: Training (motivation and main lecture videos) Tutorial 4: CNNs, ResNets (video and notebook)  
7 Monday
27/04/2020
Advanced training techniques    
8 07/05/2020 Lecture 5: Sequence models (part 1 and 2 videos) Tutorial 5: Sequence modeling, RNNs, TCNs (video and notebook) HW3
9 14/05/2020 NO CLASS    
10 21/05/2020 Lecture 5: Attention and Transformers (slides) Tutorial 7: Attention (video and notebook)  
11 Sunday
24/05/2020
Lecture 6: Unsupervised learning and supplementary (videos) Tutorial 6: Transfer learning and domain adaptation (video and notebook)  
12 04/06/2020 Lecture 7: Deep Reinforcement learning (video) Tutorial 8: Deep reinforcement learning (video and notebook) HW4
13 11/06/2020 Lecture 11: Non-euclidean domains (video) Tutorial 9: Geometric deep learning (video and notebook)  
14 18/06/2020 Lecture 8: Intro to parallel architectures (video) Tutorial 10: CUDA  
15 25/06/2020 Assorted theoretical topics